Addressing “Loss and Damage” Under the Paris Agreement

I have recently published an online commentary on Article 8 of the Paris Agreement on The Conversation site, which addresses the issue of “loss and damage.” I think that loss and damage is an excellent issue to discuss with students because untitledit provides a device to discuss many “meta issues,” including the potential role of State responsibility and liability for climate damages, the role of climate justice, and the effectiveness of risk-pooling mechanisms, such as insurance.

Incidentally, The Conversation site has a lot of interesting energy and climate commentary by academics. Because it’s designed to be accessible to wider audiences, much of the content might be particularly appropriate for undergraduate students.

Updated Compendium on the Paris Agreement

untitledThis site’s Compendium on the Paris Agreement, which seeks to bring together key online resources on the agreement, has been expanded recently to more than 130 links. The Compendium is available at: http://teachingclimatelaw.org/wp-admin/post.php?post=2993&action=edit

Any suggestions for additional resources are greatly appreciated, and can be submitted to the Compendium’s creator, Wil Burns, at: jiwlp@berkeley.edu.

“Tough Love” on the Path to 2C?

In a new article (subscription only, but link here will take you to a pre-edited version on Professor Anderson’s home page) published in the journal Nature Geoscience, Kevin Anderson of Tyndall Centre for Climate Change Research at the University of Manchester, argues that many of the recent scenarios for limiting temperatures to 2C or below are far too insouciant about the challenges ahead. Anderson contends that such “up-beat — and largely uncontested — headlines . . . are deliveClimate_Feedback_logo_sred through unrealistically early peaks in global emissions, or through the large-scale rollout of speculative technologies intended to remove CO2 from the atmosphere …”

By contrast, Anderson contends that the carbon budgets consistent with a 2C scenario requires “profound and immediate changes to the consumption and production of energy.” Among Anderson’s conclusions:

  1. The IPCC’s 1000 Gt cumulative carbon budget (for having a 66% chance or better of avoiding passing the 2C threshold) requires cessation of all carbon emissions from energy systems by 2050, five decades earlier than projected by the IPCC in its 5th Synthesis Report;
  2. Of 400 IPCC scenarios that have 50% chance or more of keeping temperatures below 2C, a whopping 344 require large-scale deployment of so-called negative emissions technologies (poster’s note: these include technologies such as Direct Air Capture and Bioenergy and Carbon Capture and Sequestration);
  3. Limiting emissions to 1000 GtCO2, with energy production alone chewing up 140 GtCO2 of this budget from 2011 to 2014 alone (overall a fifth of the budget has been emitted in four years), “suggests a profoundly more challenging timeframe and rate of mitigation than that typically asserted by many within the scientific community;”
    1. To avoid exceeding the remaining 650 GtCO2 in the budget would require ratcheting up emissions reduction rates to 10% annually by 2025, continuing this rate to virtual elimination of carbon dioxide by 2050. This would most likely exclude the use of fossil fuels in the post-2050 period, even with deployment of carbon capture and storage, unless its life cycle carbon emissions could be reduced by an order of magnitude;
  4. Given the need to avoid further imperiling the welfare of the global poor, developing countries should need to reduce carbon intensity by approximately 13% annually, higher still for the wealthiest developed countries.

Anderson’s piece could be an excellent reading for a module on long-term responses to climate change and what it will mean to reach the overarching objectives of the Paris Agreement. Among the questions that would be ripe for class discussion:

  1. What would be the policy implications of seeking to meet the more ambitious objective under Paris of limiting temperature increases to 1.5C above pre-industrial levels?;
  2. Anderson portrays negative emissions options as “speculative” or a deus ex machina; do you agree? Assuming that negative technologies can help to remove carbon from the atmosphere, are there any downsides to this approach?;
  3. What are some of the measures that could be taken to effectuate the radical transformation of the world’s economy that could meet the objective of limiting temperatures to 2C?

Soil Carbon Sequestration and Biochar Technologies

The recognition that most IPCC scenarios for to avoid exceeding the 2°C “guardrail” require large-scale deployment of negative emissions technologies (NETs) has led to extensive recent discussion of the potential effectiveness and risks associated with a range of option. However, as the authors of a new study published in theBiochar journal Global Change Biology conclude, most studies to date have focused on bioenergy with carbon capture and sequestration (BECCS), direct air capture, enhanced weathering of minerals, and afforestation and reforestation. This study, by Pete Smith at the University of Aberdeen, expands the scope of inquiry to two other NETs options: 1. soil carbon sequestration (SCS), through methods such as alternation of agricultural practices, including no-till or low-till with residue management, organic amendment and fire management; and 2. Biochar, which is production of charcoal as soil amendment via the process of pyrolysis which can, inter alia, sequester carbon. Biochar, at least, is often included under the rubric of “climate geoengineering” options, in the subcategory of carbon dioxide removal (CDR) approaches.

Among the study’s findings:

  1. SCS at global scale could sequester from 0.4-0.7GtCeq. yr-1, with technical potential of 1.37GtCeq. yr-1, at a cost of ~$70-370 per ton of Ceq. Biochar could effectuate sequestration of ~1 GtCeq yr-1, with a maximum potential of 1.8 GtCeq yr-1
  2. By contrast, BECCS might be able to sequester 3.3 GtCeq yr-1 by 2100, and direct air capture a comparable amount. However, the potential of SCS and biochar are higher than either enhanced weathering and comparable to afforestation and deforestation;
  3. About 20% of the mitigation to be derived from SCS could occur at negative cost, and 80% between $0-40 tCeq. Biochar costs range from -$581-1560 billion;
  4. In terms of water requirements, SCS and biochar are virtually zero, while direct air capture has medium to high water demands, and BECCS creating “a very large water footprint;”
  5. In terms of energy requirements, SCS has a negligible energy impact, and biochar can actually produce energy during the pyrolysis process; by contrast, both direct air capture and enhancing mineral weathering have significant energy requirements;
  6. One significant issue in terms of both SCS and biochar is “sink saturation,” i.e. decreased carbon sequestration potential as soils approach a new, higher equilibrium level. This can occur after 10-100 years for SCS, and is also an issue for biochar. This has implications for deployment of these technologies, as most scenarios for use of NETs envision primary importance in the second half of this century, meaning that deployment of some approaches in the next few years might have little impact later this century.

Overall, the author of the study concludes that SCS and biochar should be given serious consideration in integrated assessment models given their advantages over some other NET approaches.

Among the classroom questions that this study might generate:

  1. How do we determine the optimal mix of R&D funding for NETs?
  2. What should be the most important criteria for determining if we proceed with research on individual NETs options?
  3. What kind of governance architecture should be established for NETs research and development and/or deployment?

Compendium of Commentary on the Paris Agreement/COP21

untitledThe purpose of this compendium, which will be continually updated, is to amass a compendium of online pieces that might be useful for getting a handle on the new agreement, as well as providing some potential student readings.

 

1. UN INSTITUTIONAL RESOURCES

2. NEGOTIATING HISTORY AND PROCESS

3. GENERAL CRITIQUES

4. CRITICAL CRITIQUES

5. FUTURE IMPLEMENTATION OF THE PARIS AGREEMENT

5.1  U.S. Implementation

5.2   Geoengineering

6. BUSINESS FOCUS

7. ENERGY SECTOR IMPLICATIONS

8. LEGAL ANALYSES

8.1 Loss and Damage

9. ROLE OF CARBON MARKETS

10. JUSTICE AND EQUITY CONSIDERATIONS

11. MULTI-MEDIA PRESENTATIONS

 

Lecture on Climate Geoengineering

earthwrenchI recently delivered a lecture at University of Wisconsin, entitled “Into the Great Wide Open: The Potential Promise and Peril of Climate Geoengineering.” It provides an overview of climate geoengineering options and potential avenues for governance. The video for the lecture, including the Power Point presentation, is available here.

Historical Carbon/Climate “Debts,” and Implications for State Responsibility

CaptureAs this blog is being penned, the Parties to the UNFCCC are convening in Paris for COP21. The cynosure of the meeting is the mandate “to develop a protocol, another legal instrument or an agreed outcome with legal force under the Convention applicable to all Parties” to enhance climatic commitments. Thus, questions of fairness and equity in allocating emissions reductions and State responsibility are front and center. A new study by Damon Matthews in the journal Nature seeks to provide pertinent metrics to guide this inquiry. The study quantifies historical “carbon debts” of States, defined as the cumulative (since 1960) debt of countries whose emissions exceed an equal per capita share, and “climate debts,” defined as “the accumulated difference between actual temperature change caused by each country … and their per-capita share of global temperature.”

Among the findings and conclusions of the study:

  1. In terms of the “carbon debt,” the cumulative world debt (and “credit” for some countries) is 500 GtCO2 since 1960, and 250 GtCO2 since 1990. This translates into 40% of said emissions produced by countries in excess of levels consistent with their shares of world population;
    1. The United States is the leading “debtor” under these calculations, with the leading “creditors” being China and India, given historically low per-capita emissions. However, the landscape has changed more recently in terms of China, with its per capita emissions now pegged above the global average;
  2. In terms of so-called “climate debt,” the United States is responsible for 32% of the cumulative debt since 1960, with other significant debtor countries including Russia (10%), Brazil (9.8%), as well as Germany, Australia and Indonesia. Brazil and Indonesia’s debt is largely attributable to high levels of deforestation and methane and nitrous oxide emissions associated with the agricultural sector;
    1. Countries with the climate “credits” include India (35%), China (26%), Bangladesh (4.9%), Pakistan (4.3%) and Nigeria (2.4%)
    2. The total climate debt translates into 0.11C temperature increase form 1990-2013, or approximately a third of warming since 1990
  3. The decision as to whether to assess emissions based on territorial/production-based emissions or a consumption-based approach that allocates emissions associated with consumption of goods to consumer countries, can make a profound difference in the calculations of the “debt.” For example, China’s exported carbon debt is almost twice as large as its production-based value, and Russia’s transferred debt/credit is almost 35%. The same is true for large importers, such as Japan, Germany and the UK.

Among the class discussion questions that this article could raise are the following:

  • From an equity perspective, should a major product exporting country, e.g. China, be responsible for the emissions associated with said products when they are consumed in other countries? Does the fact that they derive profits from such production influence your answer?
  • The article suggests that we might wish to modify the per capita emissions metric for carbon debt to acknowledge differences in circumstances, e.g. cold temperatures. Do you think this would be a good idea, and if yes, what factors would you include and how would you weight them in the carbon debt equation?
  • The study pegs the respective carbon/climate debt and credits of countries based on emissions beginning in 1960. Would you establish a different baseline, and why?

Prospects for Averting Severe Climate Change at COP21?

For instructors discussing the prospects for “The Road to Paris” at COP21 to help us build a bridge to a safer climatic future, a new study in the journal Nature would be a good student reading. The study draws upon the Intended National Determined CoNaturentributions of the more than 150 countries that have made such pledges to date,embodying 90% of the globe’s emissions. The study’s authors seek to assess both the prospects for limiting temperature changes to 2C from pre-industrial levels, as well as how much such pledges reduce the risk of the highest potential increases in temperatures. The authors emphasize that because temperature changes ultimately depend on cumulative emissions, it’s critical to assess the likely long-term paths of emissions commitments beyond the INDCs, which extend to only 2025 or 2030. This was calculated through the use of a global integrated assessment model. Also, the uncertainties associated with the global carbon cycle and climate system responses necessitates probabilistic assessments. The study utilizes two scenarios, a Paris-Continued minimum (2% annual rate) scenario assuming that countries proceed to reduce emissions at the same rate as required to achieve their INDCs between 2020-2030, and a Paris-Increased ambition scenario, assuming a 5% annual reduction beyond 2030.

The study’s conclusions include the following:

  • The Paris-Continued scenario reduces the probability of temperatures increasing more than 4C in 2100 by 75% compared to the Reference-Low policy scenario, and by 80% from a Reference-No policy scenario;
    • The chance of exceeding 4C is virtually eliminated if mitigation efforts are increased beyond 2030, such as in the Paris-Increased ambition scenario
  • There is an 8% probability of limiting temperature increases to 2C from pre-industrial levels In the Paris-Continued ambition; this increases to about 30% under the Paris-Increased scenario.
    • Scenarios to increase the probability of limiting temperatures to 2C to between 50-66% are plausible, but assume rapid emissions reductions after 2030, and many also include negative global emissions in the second half of the century, effectuated through the deployment of Bio-energy Carbon Capture and Sequestration (BECCS).
  • To limit warming to any prescribed level in the future will necessitate ultimately reducing carbon dioxide emissions to zero. If this doesn’t transpire quickly beyond 2100, the prospects of both extreme temperature changes and exceeding the 2C threshold are substantially increased.

Polimp: Resources on European and International Climate Policy

For inPolimpstructors who include a discussion of European responses to climate change, including the EU-ETS, I would suggest checking out the resources on the Polimp site.  The site is funded by the European Commission under its 7th Framework Program.

Among the resources on the site pertinent to those teaching climate and energy courses are the following:

  • The Climate Policy Information Hub, a portal which provides concise summaries and links to additional resources on an array of climate policy and science issues, including European Union climate policy, international climate policy institutions, renewable energy policies, and detailed information about climate and energy issues in several key sectors, including residential, transportation and agriculture;
  • An archived webinar series, which includes an excellent recent discussion of the future of the EU-ETS, lessons learned from the 15th UNFCCC COP in Copenhagen for the upcoming 21st COP in Paris, and the contours of European climate policy for 2030;
  • A Policy Brief Series, which includes briefings on stakeholder perspectives on the EU-ETS, and financing renewable energy in the European Union,

The site also includes a (free) newsletter for apprising subscribers of new resources on the site and upcoming events.